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Understanding by Design Templates

Understanding By Design Stage 1 — Desired Results Week 3

Larsen & Marx (2006) Chapter 2 Probability
G Established Goals (including those from the M A Dept. of Education MCAS 11" &
12" grade standar ds, http://www.doe.mass.edu/framewor ks/current.html)

. Calculate & apply unconditional and conditional probabilities

. Apply uniform, binomial, hypergeometric and multinomial distributionsto the
solutions of problems (DOE 12.D.4)

. Use combinatorics to solve problems, in particular, to compute the probability of
compound events (DOE 12.D.6)

. Compare the results of smulations with predicted probabilities (DOE 12.D.7)

U Under stand

. P values from Monte Carlo smulations converge to analytical probabilities

. That there are two non-mutually exclusive schools of statistics: frequentist & Bayesian

. N!'=T (N+1), so gammaln(N+1) isthe key to solving combinatorial problems

. Many biodiversity indices are based on combinatorics

Q Essential Questions

. In 2-child families, what is the probability that both are boysif at least one is a boy?

. If Monty Hall offers, should you switch doorsin ‘ The Price is Right’ ?

. For men, given a positive PSA test, should you have your prostate removed?

. Why isn’'t this course being offered using Bayesian methods?

. How many students must be in a class to have better than even odds that 2 or more
share a birthday?

. Why didn’'t Sanders' 1968 biodiversity rarefaction formula work?

K Sudents will know how to define (in words or equations)

. Bayes Theorem, binomial coefficient, combination, complement, conditional
probability, event, experiment, false negative, false positive, Hurlbert's E(S),
independence, inter section, Monte Carlo simulation, multiplication rule,
multinomial coefficient, null set, odds, per mutations, prevalence rate, probability,
sampl e outcome, sample space, sensitivity, specificity, union, Venn diagram, yield or
predictive value

S Sudents will be able to

. Plot Venn diagramsin Matlab

. Analyze problems with Bayes' theorem
. Count outcomes using the multiplication rule, permutations & combinations
. Write combinatorial problems using Matlab’s gammaln function

. Analyze biodiversity using Matlab with Brillouin'sH & Shannon’sH
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Understanding by Design Stage 2 — Assessment Evidence Week 2

LM Chapter 2 (21-127) Probability
Post in the discussion section by 6/15/11 W
. Marshall Nirenberg discovered the genetic code, refuting the code proposed by
George Gamow. Gamow’ s proposed code was based on the 24 3-nucleotide
permutations of AGCU. Isit chance that all life is based on Nirenberg's code
and not Gamow’ s?
. HW2 Praoblems due Wednesday 6/15/11 W 10 PM

. Each problem must be solved using Matlab
. Basic problems (Pick 4 of 5 problems 10 points)
. Problem 2.2.4 P. 26 Outcomesin a deck of cards

Two cards are dealt from a standard 52-card deck. Let A be the event
that the sum of two cardsis eight. Write a Matlab program to list the
outcomesin A. Use LMex020203_4th.4 and LMex020201_4th.m as
paradigms. | used this as my opening line of a 6-line program:
deck=repmat(1:52/4,1,4)

. Problem 2.3.8 P.41 Venn diagrams
. Use venn.m (from the Mathworks website) or from Gallagher’s
EEOS601 files

. Use Example 2.2.12 & 2.3.1 asmodels
. Problem 2.4.18 P. 53
Use LMex020202_4th.m as a model
. Problem 2.4.46 P. 68 Murder She Wrote
Use Example 2.4.12 (LMex020412_4th.m) asamodel (or 2.4.13,

2.4.14)
. Problem 2.6.34 P. 105. Which state can generate more permutations;
Tennessee or Horida?
. Advanced problems (2.5 points each)

. Continue the analysis of Example 2.2.9 on p. 29 and Gallagher’s
LMex020209 4th.m. Let C be the event that the sum of the facesis
even. Analyze AnC and BNC with a Matlab program that counts and
displays the outcomes.

. Example 2.4.2 p 44. Modify Gallagher’ s Matlab program
LMex020402_4th.m to produce a Monte Carlo ssmulation of the two-
boys problem. Use LMex020303_4th.m as a model.

. Master problems (2.5 points each)

. Problem 2.3.10. Write a Matlab program to solve A u B exactly and as
aMonte Carlo ssimulation. Use LMex020209 _4th.m and
LMex020303_4th.m as model

. Modify the MCASQ9 code from HO4 to find the area of the outer
circle. Do not use pi or any approximations for pi in your solution. Use
the Nahin program and Bevington & Taylor figure asamodel.
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| ntr oduction

Chapter 2 introduces the probability theory that is the foundation of all statistical analysis. The
list of terms that must be mastered is daunting (see the list under K in the Understanding by
Design template). On top of the conceptual difficulty of mastering probability is the issue of
programming these techniques in Matlab. The Matlab programs for the final 8 chapters of the
text are smple: enter the data and use 2 or 3 Matlab functions to perform the statistical analysis
and graph the results. For chapters 2-3, it becomes very difficult to even conceive how to turn
word problems into Matlab algorithms. These programs tend to use indexing to select sample
outcomes and determine probabilities. All | can say isthat try to work through this section of
the class as well as you can. Things will get easier as these concepts and Matlab programming

tricks become more familiar.

Bayes Theorem & M CASfailure

The MA Dept of Educations’ Technical Appendix C for the 1998 math 10" grade MCAS reveals
adisturbing fact. Even if the testing theory underlying MCAS is correct, amost 17% of the

students who should have scored in the ‘ Needs Improvement’ category will fail MCAS. About
9% of all the students who should have passed MCAS will receive failing scores.

Fable 1. An analysis of the 10™ grade 1998 MCAS math classification analysis shown in Appendix
C of the October 1999 Technical report for the 1998 MCAS exam. The first table shown under the
heading Step 4 shows the data as presented in the technical Appendix C. | converted this table to
conditional probabiliites, by dividing each probability by the row marginal total. This shows what
bercentage of students in each true category are misclassified. 16.53% (4.27/25.86) of the
students in the “Needs Improvement” category were misclassified as failing.
Step 4 Predicted Classification
Fail NI Prof Adv Marginal
Fail 46.95% 4.04% 0.01% 0.00% 51.00%
True Status Needs Improvement 4.27% 17.90% 3.68% 0.01% 25.86%
Proficient 0.00% 2.96% 12.68% 1.97% 17.61%
Advanced 0.00% 0.00% 1.08% 4.44% 5.52%
Marginal 51.22% 24.90% 17.45% 6.41% 99.99%
Misclassification rates (bolded in red)
Predicted
Fail NI Prof Adv Marginal
Fail 92.06% 7.91% 0.03% 0.00% 100.00%
= Needs Improvement| 16.53% 69.21% 14.23% 0.03% 100.00%
ue Status Proficient 0.01% 16.83% 71.97% 11.19% 100.00%
Advanced 0 00% 0 03% 19 60% 20 37% 100.00%
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What isthe probability of being classified an MCAS Failureif you arenot afailure: Bayes
Theorem

The Problem
Bayes' Theorem

Let { A, } 121 be a set of n events,

each with positive probability,
that partions S in such a way that
n

U4-=5

i=1
and A, ﬂAj = Q@ fori=#j.
For any event B (also defined on §S),
where P(B) > 0,

P(BI4)P(A)

; P(BA)P(4)
for any i <j < n.

P(4)B) -

What is the probability of receiving afailing grade on the MCAS test if your true abilitiesare in
the passing range? Let Event A be the probability of a student getting a failing score on MCAS
and Event B be the probability that the student’ s true ability isin the passing range. Our goal is
to determine P(A|B). We using Bayes theorem.

P(MCAS Failure | ~Failure) =
P (~Failure|MCAS Failure) P(MCAS Failure)

P(~Failure | MCAS Failure) P(MCAS Failure) + P(~Failure |~MCAS Failure) P(~MCAS Failure)

From the upper part of Table 1.

Numer ator

P(BJA)=P (~Failure]MCAS Failure) = 4.27/51.22= 1- (46.95/51.22) = 0.0834
P(A)= P(MCAS Failure) = 0.5122

P(BJA)*P(A)=0.0834*0.5122 = 0.0427

Denominator

Do the calculation from the definition of conditional probability:

P(~Failure XM CAS Failure) = P (Not a Failure) n P(-MCAS Failure) / P(-MCAS Failure);
((.2586-.0427)+(0.1761-0)+(0.0552-0)) /(1-.5122)
=0.9168

or by summing the individual probabilities:

denominator = P(B|A)*P(A)+P(B|~A)*P(~A)

P(B |-A) = (0.1790+0.0368+0.0001+0.0296+0.1268+0.0197+0.0108+0.0444) / (1-.5122)


http:46.95/51.22
http:4.27/51.22
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= 0.9168
P(~A)=P(~MCAS Failure) = 1 - 0.5122 = 0.4878

Combine these probabilitiesin Bayes theorem
P = 0.0834*0.5122/(0.0834*0.5122 + 0.9168*0.4878)=0.0427/ 0.4899
P=0.0872

Therefore, there is about a 9% chance that if a student received his MCAS failure notice for the
1998 exam (<220 on a 200 to 400 scale), that the correct classification should have been * not
failing.”

This misclassification rate is based on the latest information available, for the 1998 test. Since
thisisthetest on which al other MCAS tests are based, it is highly unlikely that this
misclassification rate could be less on later tests. Scaling alater test to resemble the 1998 scores
introduces a large additional source of variability, which should increase the misclassification
rate. Inthe Spring 2001 test, the modal distribution of failures moved closer to the 220 cutoff.
Thiswould tend to increase the misclassification rate. To do this calculation requires the
appendices for the MCAS technical reports. The technical reports have only been published for
the 1998 and 1999 exams, and the DOE web site doesn’t include the technical appendices for the
1999 MCAS exam.

Annotated outline (with Matlab scripts) for Larsen & Marx
Chapter 2

2 Chapter 2: Probability
Pierre de Fermat (1601-1605)
Blaise Pascal (1623-1662)
21 INTRODUCTION
211 Examples
2.1.1.1 NASA Challenger: if the odds of a Challenger type disaster are 1
in 78, what are the odds of getting a disaster in the 20 launches
over a 5-year period?
2.1.1.2 Polygraph
2.1.1.3 Baseball player: What are the odds of getting a hit in 30 games?
2.1.1.4 Births
2.1.2 TheEvolution and Definition of Probability (p. 22)
2.1.2.1 Cardano’ s classic definition of probability
21211 “..the probability of an event comprised of m
outcomes istheratio nvVn, where n isthe total
number of equally likely outcomes.”
2.1.2.2 Von Mises s empirical probabilities. Repeating an experiment
over and over
2.1.2.3 Andrei Kolmogorov in 1933
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2.2 SAMPLE SPACESAND THE ALGEBRA OF SETS (p 24)
2.2.1.1 Definitions
22111 “By experiment we will mean any procedure that
(1) can be repeated, theoretically, an infinite
number of times; and (2) has a well-defined set of
possible outcomes” (Larsen & Marx 2006 p. 24)
22112 Sample outcome “ Each of the potential
eventualities of an experiment isreferred to
asasample outcome, s, and their totality is
referred to as a sample space, S. To signify
the membership of sin S wewritese S.
Any designated collection of sample
outcomes, including individual outcomes,
the entire sample space, and the null set,
congtitutes an event. The latter issaid to
occur if the outcome of the experiment is
one of the members of the event.” (Larsen
& Marx 20086, p. 24)

Example 2.2.1 Tossing 3 coins
% LMex020201_4th.m
% Example2.2.1p 24in
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene.Gallagher@umb.edu for EEOS601 1/13/11
% http://al pha.es.umb.edu/faculty/edg/files/edgwebp.html
% 3 Coin tosses of fair coin. List the sample space S and the sample
% outcomes for event A: majority of faces heads.
coin=['H";'T’]
% create the sample space
tosses=3
S=repmat(' ',2"tosses,3);
=1,
for facel=1:2
for face2=1.2
for face3=1:2
S(i,:)=[coin(facel) coin(face2) coin(face3)];
i=i+1;
end
end
end
disp('The sample space, S.')
S
% find sample outcomes in sample space S that make up the event A: Mgjority
% of coins show heads.
[r,c]=5z&(S);iI=find(sum(S=="H")>c/2);
fprintf('%1.0f of the sample outcomesin Sample Space S constitute the event A:\n',...


http:fprintf('%1.0f
http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html
mailto:Eugene.Gallagher@umb.edu
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length(i))
A=S(i,)

Example 2.2.2 Rolling two dice
% LMex020202_4th.m
% Example 2.2.2 Throwing 2 dice p
% Larsen & Marx (2006) Example 2.2.2, page 24 Figure 2.2.1
% Writtten by Eugene Gallagher, Eugene.Gallagher@umb.edu
% http://al pha.es.umb.edu/faculty/edg/files/edgwebp.html
% Written 9/17/2010 & last revised 1/13/2011
% What is the probability of rolling a7 with two dice
% The dice are colored red and green, but that isirrelevant here.
green=1.6
red=green’
% tile rows down 6 times
green=repmat(green,6,1) % repmat isabuilt-in function
% for earlier versions of matlab, | used rowcopy and colcopy.m
% tile columns across 6 times
red=repmat(red,1,6) % Note that the 1 column green is replaced
% by a 6x6 matrix.
sumdice=red+green
[r,c]=size(sumdice) % returns the number of rows and columns
fprintf('Sample Space, with each sample outcome an ordered pair:\n’)
fprintf('(%1.0f, %1.0f) (%1.0f, %1.0f) (%1.0f, %1.0f) (%1.0f, %1.0f) (%1.0f, %1.0f) (%1.0f,
%1.0f)\n',[green(:)";red(:)T)
i=find(sumdice==7); % indicesfor event A: sum of faces=7
length(i)
fprintf(...
'%1.0f of the %2.0f sample outcomes in sample space S constitute the event A, rollinga 7:\n’,...
length(i),r*c)
fprintf('(%1.0f,%1.0f)\n',[red(i) green(i)]")
% Not specified the problem, but here's the probability of rolling a 7:
P=length(i)/(r*c) % Probability of rolling a7
% It ismore accurate to express simple probabilities
% as fractions. 0.1667 is not exactly equal to 1/6
% Matlab can expressresultsin fractional form
% by typing format rat, short for rational number format
format rat
disp('The probability of rolling a7 with two diceis:")
P
% Here is one of many 1-line solutions to the problem
red=repmat(1:6,6,1);c=red+red’;P=sum(c(:)==7)/length(c(®));
% typing format returns Matlab to its numerical default
format
% Trandation of the 1-line program
% 1st repmat copies the row vector 1:6 down producing 6 rows of 1:6


http:fprintf('(%1.0f
http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html
mailto:Eugene.Gallagher@umb.edu
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% The sample space, c is created by adding the results of the red die to
% its transpose red'

% c represents the sample space, produced by summing 1:6 for first die &
% 1:6 for 2nd die

% c(:) converts any matrix to a single column of numbers

% c(:)==7, alogical statement, convertscto aset of 1'sand O's

% alisenteredif cequals 7, azeroif c(i) not equal to zero

% sum(c(:)==7) provides the number of elements equal to 9

% length(c(:)==7) provides the number of events in the sample space, 36.

Example 2.2.3 Newscasting positions

% LMex020203_4th.m

% Example 2.2.2 Throwing 2 dice p

% Larsen & Marx (2006) Example 2.2.2, page 24 Figure 2.2.1

% Writtten by Eugene Gallagher, Eugene.Gallagher@umb.edu

% http://al pha.es.umb.edu/faculty/edg/files/edgwebp.html

% Written 9/17/2010 & last revised 1/13/2011

% What is the probability of rolling a 7 with two dice

% The dice are colored red and green, but that isirrelevant here.

% The curly brackets make V acell-structured matrix allowing the
% labels to be sorted as a unit.

V=[{'W1}{'W2};{'W3} {'M1}{'M2}];

fprintf("Sample Space, with each sample outcome an ordered pair:\n’)
% Thisisthe built-in Matlab combination function. Since V is an input
% vector, not ascalar, al of the combinations of size 2 are output.
nchoosek(V,2)

Example 2.2.4 Infinite sample space
% LMex020204_4th.m
% Example2.2.1p 24in
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene.Gallagher@umb.edu for EEOS601 1/13/11
% http://al pha.es.umb.edu/faculty/edg/files/edgwebp.html
% A coinistossed until the first head appears
% This doesn't directly address the issue posed in the text, but instead
% shows another type of control loop, capable, in theory of producing an
% infinite string of coin tosses (all heads)
coin=['H";'T’]
% create the sample space
% S=cell(1);
=1,
face='H",
S
while face=="H'
face=coin(randi(2));
S(i)=face;
i=i+1;


http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html
mailto:Eugene.Gallagher@umb.edu
http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html
mailto:Eugene.Gallagher@umb.edu
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end
disp('The sample space, S.')
S

Example 2.2.5 Quadratic equation,

% LMex020205_4th.m

% Example 2.2.5 page 25-26 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% A computer programmer is runining a subroutine that solves a general

% quadratic equation 'a*x"2 + b*x + ¢' Her experiment consists of choosing
% values for the three coefficients a, b, and c. Define (1) Sand (2) the

% event A: Equation has two equal roots.

symsabcxAuvwz

A = solve(a*x"2 + b*x + ¢);

fprintf(‘Membership is A is contingent upon a, b and ¢ satisfying:\n)
a=solve(A(1)-A(2),a)

b=solve(A(1)-A(2),b)

c=solve(A(1)-A(2),0)

Questions Page 26-28

2.2.1 Graduating engineer

2.2.2 3dice problem Fall 2010

2.2.3 Chipsinurns

2.2.4 52-card deck: outcomes summing to 8 Summer 2011

Women picking suspectsin alineup

Quadratic equation (look up solution form)

Prisoners and urns
2.2.2 Unions, intersections and complements

Definition 2.2.1 Let A and B be any two events defined over the same sample space S. Then
The intersection of A and B, written A N B, is the event whose outcomes belong
to both A and B. The union of A and B, written A u B, isthe event whose
outcomes belong to either A or B or both.

Example 2.2.6 A single card is drawn from a poker deck. Not an easy Matlab problem.
% LMex020206_4th.m

% Example 2.2.7 page 28 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene.Gallagher@umb.edu 1/14/11 31

% http://al pha.es.umb.edu/faculty/edg/files/edgwebp.html

% A singe card is drawn from a poker deck. A isthe event that an Ace has
% been selected and B isthe event "Heart isdrawn" Find A intersection B

% and A union B. Let C be the event aclub isdrawn. Find B U C and BC.
deckn=repmat(1:13,1,4);

deckf=repmat('HCDS,1,13);

Ai=find(deckn==1);Bi=find(deckf=="H");

i=intersect(Ai,Bi);

fprintf('The intersection of A & B has %2.0f outcome(s):\n',length(i))


http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html
mailto:Eugene.Gallagher@umb.edu
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fprintf('%1c%2.0f\n',[deckf(i)' deckn(i)]")

i=union(Ai,Bi);

fprintf(‘'The union of A & B has %2.0f outcome(s):\n',length(i))
fprintf('%1c%2.0f\n’,[deckf(i)" deckn(i)])

Ci=find(deckf=="C");

i=union(Bi,Ci);

fprintf('The union of B & C has %2.0f outcome(s):\n',length(i))
fprintf('%1c%2.0f\n',[deckf(i)' deckn(i)]")

i=intersect(Bi,Ci);

fprintf('The intersection of B & C has %2.0f outcome(s):\n',length(i))
fprintf('%1c%2.0f\n',[deckf (i)' deckn(i)])

Example 2.2.7 Let A bet the set of x’sfor which x? + 2x=8; let B be the set for which x? +
x=6,FAindAnBandA u B.

% LMex020207_4th.m

% Example 2.2.7 page 28 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition

% Written by Eugene.Gallagher@umb.edu 1/14/11 41

% Let A be the set of x's for which x"2+2*x=8; let B be the set for which

% x"2+x=6. Find A"B and AUB. Thiswill be an application of Matlab's

% symbolic math equation solver

symsA B x

A=s0lve(x"2+2* x-8)

B=solve(x"2+x-6) -
AintB=solve(x"2+2* x-8,x"2+x-6) Figure 2.2.2
AunionB=unique([A B])

Example 2.2.8 Consider the electrical circuit

pictured in Figure 2.2.2. Let '*J’ J’
Or O

A, denote the event that

switchii failsto close,

i=1,2.34. Let A bethe event @(‘ () (
“Circuit is not completed.”

Express A in terms of the !

WV

Ai's. Figure 1. Figure 2.2.2
Call the ® and @ switches, line g ' ‘
cal the ® and @ switches, line b; By
inspection, the circuit fails only if both lineaand line b fail. But line afailsonly if either
@ or @ (or both) fail. That is, the event that line afaillsistheunion A; u A,. Similarly
the failure of line bistheunion A; u A,. The event that the circuit fails, then, isthe
intersection:
A=(A;UA)N(A;UA)
[See Nahin problem 3: Will the light bulb glow?]
Example 2.2.9
% LMex020209_4th.m
% Example 2.2.9 page 28 in
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
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% Written by Eugene.Gallagher@umb.edu 1/14/11 44
% http://a pha.es.umb.edu/faculty/edg/fil es/edgwebp.html
% Let A be the event that the sum of the facesis odd. Let B be the event
% that the two faces themselves are odd. What is the intersection?
% Use the dice example LMex020202_4th.m as a paradigm
green=1:6
red=green’
% tile rows down 6 times
green=repmat(green,6,1) % repmat is a built-in function
% for earlier versions of matlab, | used rowcopy and colcopy.m
% tile columns across 6 times
red=repmat(red,1,6) % Note that the 1 column green is replaced
% by a 6x6 matrix.

sumdice=red+green
[r,c]=size(sumdice); % returns the number of rows and columns
i=find(mod(sumdice,2)); % Returns the remainder after dividing by two
[A,m]=sort(sumdice(i)); %findsal of the odd sums, at location i
fprintf('Event A consists of the following dice and their sum:\n’);
disp(" red green sum)
disp([red(i(m)) green(i(m)) A])
J=find(mod(red,2)& mod(green,2));
B=[red(j) green(j)]
AintB=intersect(i,j);
if isempty(AintB)

fprintf('The intersection of A and B is empty.\n’)
else

fprintf('The intersection of A and B has %2.0f outcomes:\n',...

length(AintB))
disp(' red green sum’)

disp([red(AintB) green(AintB) sumdice(AintB)])

end

Definition 2.2.2. Events A and B defined over the same sample space are said to be mutually
exclusive if they have no outcomesin common — that is, if A n B = o, where o isthe null set.

Example 2.2.9 Throwing two dice & analyzing the inter sections of setsin Matlab
% LMex020209_4th.m

% Example 2.2.9 page 28 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene.Gallagher@umb.edu 1/14/11

% http://al pha.es.umb.edu/faculty/edg/files/edgwebp.html

% Let A be the event that the sum of the facesis odd. Let B be the event

% that the two faces themselves are odd. What is the intersection?

% Use the dice example LMex020202_4th.m as a paradigm

green=1.6

red=green’

% tile rows down 6 times
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green=repmat(green,6,1) % repmat isabuilt-in function
% for earlier versions of matlab, | used rowcopy and colcopy.m
% tile columns across 6 times
red=repmat(red,1,6) % Note that the 1 column green is replaced
% by a 6x6 matrix.

sumdice=red+green
[r,c]=size(sumdice); % returnsthe number of rows and columns
i=find(mod(sumdice,2)); % Returns the remainder after dividing by two
[A,m]=sort(sumdice(i)); %findsal of the odd sums, at location i
fprintf('Event A consists of the following dice and their sum:\n’);
disp(" red green sum)
disp([red(i(m)) green(i(m)) A])
j=find(mod(red,2)& mod(green,2));
B=[red(j) green(j)]
AintB=intersect(i,j);
if isempty(AintB)

fprintf('The intersection of A and B is empty.\n’)
else

fprintf('The intersection of A and B has %2.0f outcomes:\n',...

length(AintB))
disp(" red green sum)

disp([red(AintB) green(AintB) sumdice(AintB)])

end

Definition 2.2.3. T=Let A be any event defined on a sample space S The complement of A,
written A° is the event consisting of all the outcomesin Sother than those contained in A.

Example 2.2.10 Let A be the set of {x, y} for which T
x? +y? <1. Sketch theregioninthex,y
plane corresponding to A°.

% LMex020210_4th.m

% Example 2.2.10 page 30 in )

% Larsen & Marx (2006) Introduction to , 2k

Mathematical Statistics, 4th edition Figure2. |

% Written by Eugene.Gallagher@umb.edu 1/14/11 i

% http://a pha.es.umb.edu/faculty/edg/fil es/edgwebp.html oo e

syms x y;ezplot(x"2+y"2-1);axis('square’)

% Go into the Matlab editor and fill the area outside the circle to make a

% proper 1-circle venn diagram

i -

Example 2.2.11 Not a Matlab problem.

Questions p 30
Sketch the regions in the x-y plane correspondingto AuBand An Bif ...
Referring to example 2.2.7
Find
An electronic system has four components divided into two pairs. The two components of each
pair are wired in parallel; the two pairsare wired in series. Let Aij denote the event “ith
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component in jth pair fal” i=1,2; j=1,2. Let A bethe event “ System fails’ Write A in terms of
the Aij’s.

223

224

2.25 Expressingideasgraphically Venn diagrams
Note that there is anice Matlab program called Venn.m on the User contributed m.files that can
be used for these examples
Fig.2.2.4

Example 2.2.12 Venn diagrams
% Plot asimple 2-circle Venn diagram with custom A(@:_ g Laus
)

Venn diagrams

patch properties
figure, axis equal, axis off
A =[4040]; 1 =[5]; *
venn(A,I,'FaceColor' {‘'w',w'} ,'FaceAlpha,{ 0.6,0.6} .
EdgeColor'black’) Q o (D s
% These diagrams can't be edited properly within C} i
Matlab, but they do gk
% provide the basis for editing outside of Matlab.
gtext('A',FontSize',20);gtext('B','FontSize',20)
Example 2.2.13 When Swampwater Tech’s Class
of ‘55 held itsfortieth Reunion, 100 graduates
attended ...
% LMex020213_4th.m
% Example 2.2.12 p 33-34 in H
% Larsen & Marx (2006) Introduction to s i
Mathematical Statistics, 4th edition
% Written by Eugene.Gallagher@umb.edu 1/14/11
37
% |
http://al pha.es.umb.edu/faculty/edg/files/edgwebp.ht —
ml
% Plot a ssimple 3-circle venn diagram with custom
patch properties
figure, axis equal, axis off
A =[100 15 30]; I =[15 30 10 10]; Figure 4.
venn(A,|,'FaceColor'{'y',r','g} ,'FaceAlpha,{ 0.4,0.6, |
0.6} ,'EdgeColor’,'black’)
% These diagrams can't be edited properly within Matlab, but they do
% provide the basis for editing outside of Matlab.
% gtext will place the labels A and B
gtext('S,'FontSize' ,20);gtext('L','FontSize',20),
gtext('H','FontSize',20)
Questionsp. 35

S S

FIGURE 2.2.4
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2.3.31During orientation week, the latest Batman movie was shown twice at State University.
Among the entering class of 6000 freshmen, 850 went to see it the first time, 690 the second
time, while 4700 failed to see it either time. How many saw it twice?

2.3.32Let A and B be any two events. Use Venn diagrams to show that @) the complement of
their intersection is the union of their complements:

(ANBY =4°UB"

the complement of their union is the intersection of their complements:
AUBY =4°NB"-

These two results are known as DeMorgan’s laws.
Let A, B and C be any three events. Use Venn diagramsto show that An(Bu C)=(AnB)u
AnC)b)Au(BNnC)=(AuB)n(AuC)

Venn diagram
2.3  TheProbability Function
2.3.1 Four ways of defining probability

2.3.1.1 Classical probability
“Imagine an experiment, or game, having n possible outcomes —
and suppose that those outcomes are equally likely. If some event
A were satisfied by mout of those n, the probability of A [Written
P(A)] should be set equal to myn. Thisisthe classical or a priori
definition of probability.

2.3.1.2 Empirical probability (Attributed to von Mises, but can be found
at least a century earlier)
“Consider asample space S, and any event A, defined on A. If our
experiment were performed one time, either A or A° would be the
outcome. If it were performed n times, the resulting set of sample
outcomes would be members of A on m occasions, m being some
integer between 0 and n, inclusive. Hypothetically, we could
continue the process an infinite number of times. Asn getslarge,
the ratio m/n will fluctuate lessand less. The number that mv/n
convergesto is called the empirical probability of A, that is
P(A) = lim m/n.

2.3.1.3 Axiomatic probability. Andrei Kolmogorov
If Shas afinite number of members, Kolmogorov showed that as
few as three axioms are necessary and sufficient for characterizing
the probability function P.
23131 Axiom 1. Let A be any event defined over S.

Then P(A) >0.

23132 Axiom 2 PO =1
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23133 Axiom 3 Let A and B be any two mutually
exclusive events defined over S. Then

P4 UB) = P(4) + P(B).

When S has an infinite number of members, a
fourth axiom is needed

23134 Axiom4 Let A, A,, ..., be events defined over S
If A;n A= o foreachi #|, then

P( ,-91) = gP(Ai).

From these simple statements, all other properties
of the probability function can be derived.
2.3.1.4 Subj ective probability
23141 What is a person’s measure of belief that an event

will occur?

Some basic properties of P

Theorem 2.3.1 P(A°)=1 - P(A)

Proof. By axiom 2 and Definition 2.2.3

Theorem 2.3.2 P(z) =0.
Theorem 2.3.3 If A < B, then P(A) <P(B).
Theorem 2.3.4 For any event A, P(A)<1.
Theorem 2.3.5 Let A;, A,, ... A beeventsdefined over S. If A;n A= o fori #|, then
PlU4,| = Y PA).
i=1

i=1

Theorem 2.3.6 P(AUB) = P(4) + P(B) - P(ANB).
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Example 2.3.1

% LMex020301_4th.m

% Example 2.3.1 p 38-39 in

% Larsen & Marx (2006) Introduction to

Mathematical Statistics, 4th edition

% Written by Eugene.Gallagher@umb.edu 1/14/11

%

http://al pha.es.umb.edu/faculty/edg/files/edgwebp.ht A

mi

% Plot asmple 2-circle Venn diagram with custom

patch properties
figure, axis equal, axis off
A=[.3.5];1=[.1]; Figure 5. Figure 2.3.2
% Prints 2.3.1
% venn(A,l,'FaceColor' {'w',w'} ,'FaceAlpha,{ 0.6,0.6} ,'EdgeColor’,'black’)
% Prints 2.3.2 with appropriate editing in another program
venn(A,l,'FaceColor',{'w','g} ,'FaceAlpha { .2,.6} ,'EdgeColor’,'black’)
% These diagrams can't be edited properly within Matlab, but they do
% provide the basis for editing outside of Matlab.

% gtext will place the labels A and B
gtext('A',FontSize' ,20);gtext('B',’FontSize',20)
figure(gcf); pause

Example 2.3.2 Show that P(AnB)>P(A°)-P(B°) for any two events A and B defined on a

sample space S. Not a Matlab problem

Example 2.3.3 Two cards are drawn from a poker deck without replacement. What isthe

probability that the second is higher in rank than the first?

Let A A,A; bethe events “First card islower in rank, “First card is higher in rank,
and “Both cards have the same rank,” respectively. Clearly, the three A;’sare mutually

exclusive and they account for all possible outcomes, so from Theorem 2.3.5,
P(A,U4,UA4,)=P(4,)+P(4,) + P(4;) =P(S) = 1.

Oncethe first card is drawn, there are only three choices for the second that would have
the same rank —that is, P(A;)=3/51. Symmetry, of course, demands that P(A,)=P(A,).

Therefore,

3
2P(A,)+—=1.
(42

implying that P(A,)= 1_87
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% LMex020303_4th.m .
% Example 2.3.3 from Larsen & Marx (2006, | |1 &xPected valueis 0.4706

p 39). . .

% Written by E. Gallagher 8/4/01; revised e trials, P(2nd card > first) was
114111 : | .

% Written by Eugene.Gall agher@umb.edu gzzgggir dagiI?c;vE\)/er confidence limits are
1/14/11 : :

%
http://al pha.es.umb.edu/facul ty/edg/fil es/edgwebp.html
% Y ou draw two cards at random. What is the probability that the
% second card is greater than the first?
% Solved via Monte Carlo smulation.
fprintf('The expected value is %6.4f\n\n',8/17)
% Monte Carlo smulation
deck=1:13;
deck=repmat(deck’,1,4); % tile 4 timesfor the 4 suits
deck=deck(:);
trial s=1e5;
twocards=zeros(trials,2); % initialize a matrix to store results
for i=1:trias
j=randperm(52); % This shuffles the numbers 1 to 52
% savesthe 1st 2 cards after randperm has shuffled the deck
twocards(i,:)=[deck(j (1)) deck(j(2))];
end
i=find(twocards(:,2)>twocards(:,1)); % compares columnsin each row
p=length(i)/trials;
% Confidence intervals will be introduced in Chapter 6:
fprintf('In %6.0f trials, P(2nd card > first) was %6.4f\n',triads, p)
% 95% percent confidence interval for p:
halfwidth=1.96* sgrt(p* (1-p)/trials);
fprintf(...
"The upper and lower confidence limits are %6.4f
and %6.4f\n’,...
p-halfwidth,p+halfwidth)

Example 2.3.4

Martial artsfilm. The actress appears in 40% of the
film’s scenes. Her double appearsin 30%, and the
two of them appear together 5% of the time. What
isthe probability that in agiven scene (a) only the
stunt double appears and (b) neither the lead actress
nor the double appears?

Figure 6. Example 2.3.4
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P(Only double appears) = P(D) - P(L N D)

0.30 - 0.05
0.25
P(Neither appears) = 1 - P(L U D)

1 - [P(L) + P(D) - P(L N D)]
1 - [0.40 + 0.30 - 0.05]
0.35

Example 2.3.5 Biff decides to test the medical school waters and sends hisMCATsto
two colleges, X and Y. Based on how hisfriends fared, he estimates that his probability
of being accepted at X is0.7 and at Y is0.4. He also expects that there is a 75% chance
that at least one of his applications will be regjected. What is the probability that he gets
at least one acceptance. Let A be the event “ School A accepts him” and B, the event
“School Y acceptshim.” We are given that P(A)=0.7, P(B)=0.4, and P(A° u B)=0.75.
What we are looking for is P(A u B).

From Theorem 2.3.6,

P(A UB) = P(4) + P(B) - P(4 N B).
Recall from Question 2.2.17 that A°u B® = (A n B), so

P(AUB) =1 -[(P(A)NP(B))] =1-0.75 =0.25.

P(AuUB)=0.7+04-025
=0.85

Questionsp 41

Violenceon TV

2.3.8 Venn diagram asked of Summer 2011 students

2.3.9 Fall 2010 Submit aMatlab m.file that solves 2.3.9 (p. 41) [Hint: The solution isin the back
of the book (p. 839). Y our program should consist of just 2 lines, but add your documentation
with % statements]

Let A and B be any two events defined on S. Suppose that P(A) = 0.4, P(B)=0.5, and P(A n B) =
0.1.What is the probability that A or B but not both occur?

2.3.10 To be asked as a Summer 2011 Advanced problem An urn contains 24 chips, numbered 1
through 24. Oneisdrawn at random. Let A be the event that the number isdivisible by 2 and let
B be the event that the number isdivisible by 3. Find P(A u B).
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24 CONDITIONAL PROBABILITY p42
24.1 Any probability that is revised to take into account the (known)
occurrence of other eventsis said to be a conditional probability.
2.4.2 The symbol P(A|B) — read “the probability of A given B” — isused to
denote a conditional probability. Specificaly (P|A) refersto the
probability that A will occur given that B has already occurred.”

Definition 2.4.1. Let A and B be any two events defined on Ssuch that P(B)>0. The conditional
probability of A, assuming that B has aready occurred, iswritten P(A|B) and is given by

P(AB) = %2)3).
P(ANB) = P(A|B) P(B).

Example2.4.1

% LMex020401_4th.m

% A silly program to solve Example 2.4.1 on p 44 from

% Modeled after ex 2.2.6in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene.Gallagher@umb.edu 1/14/11 31

% http://al pha.es.umb.edu/faculty/edg/files/edgwebp.html

% A card isdrawn from a poker deck. What is the probability that the card
% isaclub, given that the card isaking.

% Kingswill be 13'sin this deck.

% Cistheevent card isaclub

% K isthe event card isaking

deckn=repmat(1:13,1,4);

deckf=repmat('HCDS,1,13);
Ki=find(deckn==13);Ci=find(deckf=="C");

% P(CIK)=P(C"K)/P(K);

PK=length(Ki)/length(deckf);
PCintK=length(intersect(Ki,Ci))/length(deckf);
PCgivenK=PCintK/PK;

fprintf('The conditional probability of a Club, \n)

fprintf(‘given that the card isaKing is %6.4f\n’, PCgivenK);

% find the unconditional probability P(C)
PC=length(Ci)/length(deckf);

fprintf("'The unconditional probability of a Club is % 6.4f\n',PC)
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Example 2.4.2 p. 44 The two-boys problem
% LMex020402_4th.m
% Example 2.4.2 The two-boys problem page 44 in
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene.Gallagher@umb.edu 1/14/11 30 (with advanced problem,
% analyzing the problem as a Monte Carlo simulation)
% http://al pha.es.umb.edu/faculty/edg/files/edgwebp.html
% Consider the set of familieswith 2 children. What is the probability
% that both children are boys, given that at least one child is a boy?
% Use LMex020201_4th.m as a model
gender=['B";'G
% create the sample space
births=2;
S=repmat(' ',2births,2);
=1,
for birth1=1:2
for birth2=1:2
S(i,:)=[gender(birthl) gender(birth2)];

i=i+1;
end
end
disp(The sample space, S.)
S

% Event A=both children are boys, Event B=at least one child is a boy.

% P(A|B)=P(A"B)/P(B)=P(A)/P(B);

[r,c]=5z&(S);

PA=sum(sum(S=="B")==2)/r

PB=sum(sum(S=="B")~=0)/r

fprintf('The probability that A, "both of two children are boys’, \n')

fprintf('given B "that at least one child isaboy" is PA/PB = %6.4f\n’,...
PA/PB)

Example 2.4.3 Not a Matlab-type problem
Example 2.4.4 Not a Matlab-type problem
Example 2.4.5 Not a Matlab-type problem
Case Study 2.4.1 Not enough information to program

Case Study 2.4.2 Monty Hall problem.
% Montyhall.m from Matlab file exchange

Questions. p. 51
2.4.12 Assigned Fall 2010
2.4.18 Assigned Summer 2011 Conditional probability problem with dice

2.4.3 Applying conditional probabilitiesto Higher-Order Inter sections (p
53)
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PANA,N. NA)=PAI4NAN.. A )

- PA, 14, N4, N..NA4,,) . P44, - P4,). (2.4.3)

Example 2.4.6 Not a Good Matlab problem

Case Study 2.4.3 P(Habitable planet)

Questions p. 56

2.4.4 Calculating “Unconditional” Probabilities (p 56)

n

Theorem2.4.1 Let {4, } be a set of events defined over Ssuch that
i=1

S=U4,4,n 4, =@ fori+j,and P(A)>0 fori=12, ., n
i-1

For any event B,

P(B) = ;P(B|Ai)P(A,.)

Example 2.4.7 Urns

Example 2.4.8 A standard Poker deck is shuffled and the card on top isremoved. What isthe
probability that the second card is an ace? “What you don’t know doesn’t matter”

Example 2.4.9 Ashley’sjob interview

Example 2.4.10 Congressional Race

Example 2.4.11
% LMex020411_4th.m
% Larsen & Marx Example 2.4.11, page 59 in 4th edition
% 3rd edition Example 2.06.11, page 63 Larsen & Marx, 3rd ed.
% Eugene D. Gallagher, written 1991, revised 1/14/11
% Three chips are placed in an urn. Oneis Red on both sides, a second
% is blue on both sides and a third is red on one side and blue on the
% other. One chip is selected at random and placed on atable. It is
% Red What is the probability that the color underneath is also red?
% Monte Carlo simulation of process:
coins=['RR';'RB";'BBY;
numredt=0;
numredb=0;
trials=1€3;
for i=1:trias
pick_coin=randi(3); % picks1, 2, or 3 randomly
pick_face=randperm(2); % permutes|[1 2] randomly
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if coins(pick_coin,pick_face(1))==R’
numredt=numredt+1;
if coins(pick_coin,pick_face(2))=="R’
numredb=numredb+1;
end
end
end
P=numredb/numredt
Exp=2/3;
fprintf(‘'Expected P=%6.4f and a Monte Carlo simulation with %7.0f \n',...
Exp,trials)
fprintf(‘trials found P = %6.4f\n',P)

Questions p 60
2.4.32 Assigned Fall 2010
2.4.36 jury
245 BayesTheoremp. 63
Theorem 2.4.2 (Bayes)

Let { A, } 1;1 be a set of n events, each with positive probability,

that partitions S in such a way that U A =S and A, N AJ. =@ fori # j.
i=1

For any event B (also defined on S), where P(B) > 0,

P(B|4)P(A)

P(A)B) = —
) P(B|4)P(4)

i=1
for any i <j < n.
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Let {4, }

each with positive probability,
that partions S in such a way that

n
Ua4-=5
i=1

andAiﬂAj= D fori # j.

For any event B (also defined on §S),
where P(B) > 0,

P(BIA)P(4)

Y P@U)PA)

i=1
for any i <j < n.

;1 be a set of n events,

P(4)B) =

Example 2.4.12

% LMex020412_4th.m

% Example 2.4.14 Bayes theorem p 63-64 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene.Gallagher@umb.edu, revised 1/15/11

% http://al pha.es.umb.edu/faculty/edg/files/edgwebp.html

% Application of Bayes theorem

% Revised 1/15/2011

% Application of Bayes theorem

%A 1 = Coin Came up heads, chip came fromurn 1
%A 2 = Coincame up tails, chip came from urn 2
% B = white chip isdrawn

PAl =2/3,

PA2 =1-PA1;

PBgivenAl = 3/7;

PBgivenA2 = 6/9;

% PA2B= Probability of Tails given that the chip was white.

PA2B=PBgivenA2* PA2/(PBgivenA2* PA2+PBgivenA1* PA1);

fprintf("'The probability that the coin tosswas tailsis %6.4f.\n',PA2B)

format rat

disp(PA2B)

format

% Note that the equation could be modified if there were 3 or more

% partitions:

% PA3B=PBgivenA3* PA3/(PBgivenA3* PA3+PBgivenA2* PA2+PBgivenA1* PAL):;
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Example 2.4.13 Polygraph

% LMex020413_4th.m

% Example 2.4.13 Bayes theorem & polygraph p 64-65 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene Gallagher

% Eugene.Gallagher@umb.edu

% Revised 1/3/2010

% Application of Bayes theorem

% P (Suspect innocent | Polygraph says guilty) = P

% P (Polygraph says guilty | Suspect innocent) = .02 % False positive
% P (Suspect innocent) = 1-12/100 =PI

% P (Polygraph says guilty | suspect guilty) =.9

% A1 = Suspect innocent

% PA2B= Probability of Tails given that the chip was white.
P=BayesTheorem(.02,1-12/100,.9) % Calls afunction
P2=.02*(1-12/100)/(.02* (1-12/100)+.9* 12/100)

Example 2.4.14 Diagnostic test for cancer
% LMex020414 _4th.m
% Example 2.4.14 Bayes theorem & cancer screening p 65-66 in
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene Gallagher 2001
% Eugene.Gallagher@umb.edu
% http://al pha.es.umb.edu/faculty/edg/files/edgwebp.html
% Revised 1/15/2011
% Application of Bayes theorem
% PA_1  =Probability of cancer in population = Prevalence Rate
% PA 2 =1-PA_1=Probability that patient is cancer-free
% PB = Test is positive for cancer
% PBgivenAl =0.90 = Sengitivity of the test
% PBgivenA2 = 0.001 = False Positive Frequency
% PBcgivenAl = False Negative Frequency
% PBcgivenA2 = Screened negative and did not have the disease = Specificity
% Bayes Theorem for atest'syield or predictive value
% Yield = Predictive Value = (Prevalence)* (Sensitivity)/
% (Prevalence)* (Sensitivity)+ (1-Prevalence)* (1-Sensitivity)
PA_1=0.0001
PA 2=1-PA 1
PBgivenA1=0.90
% False positive rate:
PBgivenA2=0.001
PA1givenB=PBgivenA1*PA_1/(PBgivenA1*PA_1+PBgivenA2*PA_2)
disp(’ Table2.4.3)
disp( P(A_1) P(BJA_1"c) P(A_1[B))
for PA_1=logspace(-4,-2,3)
for PBgivenA2=logspace(-3,-4,2)


http:PBgivenA1=0.90
http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html
mailto:Eugene.Gallagher@umb.edu
mailto:Eugene.Gallagher@umb.edu

EEOS601
Applied Sttistics
Week 4, P. 27 of 45

PAlgivenB=PBgivenA1* PA_1/(PBgivenA1*PA_1+PBgivenA2*PA_2);
disp([PA_1 PBgivenA2 PAlgivenB]);
end
end

Table2.4.3

P(A_1) P(BJA_1"c) P(A_1|B)
Discase False Predictive
Prevalence Positive Value (Yield)
0.0001 0.0010 0.0826

0.0001 0.0001 0.4737

0.0010 0.0010 0.4737

0.0010 0.0001 0.9000

0.0100 0.0010 0.9000

0.0100 0.0001 0.9890

Example 2.4.15 Home burglar alarm

% LMex020415_4th.m

% Example 2.4.15 Bayes theorem & burglar alarms p 66-67 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene Gallagher 2001

% Eugene.Gallagher@umb.edu

% http://al pha.es.umb.edu/faculty/edg/files/edgwebp.html

% Revised 1/15/2011

% Application of Bayes theorem

% PA_1 =Probability of burglariesin population = Prevalence Rate
% PA 2 =1-PA_1=Probability that patient is cancer-free

% PB = Burglar alarm goes off

% PBgivenAl =0.95 = Sengitivity of the test

% PBgivenA2 = 5/370 = False Positive Frequency

% PBcgivenAl = False Negative Frequency

% PBcgivenA2 = No alarm and no burglary = Specificity

% Bayes Theorem for atest'syield or predictive value

% Yield = Predictive Value = (Prevalence)* (Sensitivity)/

% (Prevalence)* (Sensitivity)+ (1-Prevalence)* (1-Sensitivity)
PA_1=2/1e4

PA_2=1-PA_1

PBgivenA1=0.95

% False positive rate:

PBgivenA2=5/730
PA1givenB=PBgivenA1*PA_1/(PBgivenA1*PA_1+PBgivenA2*PA_2)


http:PBgivenA1=0.95
http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html
mailto:Eugene.Gallagher@umb.edu

EEOS601
Applied Sttistics
Week 4, P. 28 of 45

PBgivenA1=[.95 .97 .99 .999];
PAlgivenB=(PBgivenA1*PA_1)./(PBgivenA1*PA_1+PBgivenA2*PA_2);

disp(’ Table 2.4.4)
disp( P(BIA_1) )
disp(' Sensitivity')

fprintf(’ %4.2f %4.2f %4.2f %6.4g\n',PBgivenAl)
fprintf("Yield  95.3f 9%5.3f %5.3f 9%5.3f\n',PAlgivenB)

Table 2.4.4
P(B| A_1)
Sensitivity
0. 95 0. 97 0.99 0. 999
Yield 0.027 0.028 0.028 0.028

Example 2.4.16 Jeremy & Emma

Questions p. 68-69 2.4.42
2.4.46 Murder she wrote. Assigned Summer 2011
2.4.48 Assigned Fall 2010

2.5 Independence, p. 69

Definition 2.5.1 Two events are said to be independent if P(A n B) =P (A) - P(B).

Example 2.5.1 Let A be the event of drawing a king from a standard poker deck and B,
the event of drawing adiamond. The, by Definition 2.7.1, A and B are
independent because the probability of their intersection — drawing a
king of diamonds— is equal to P(A)- P(B)

Example 2.5.2 Suppose that A and B are independent events. Doesit follow that A® and
B¢ are also independent? That is, does P(A n B)=P(A) - P(B) guarantee
that P(A° n BY)=P(A°) - P(B°)?

Yes.

Example 2.5.3

% LMex020503_4th.m

% Example 2.5.3 Application of solve p 63-64in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene.Gallagher@umb.edu, revised 1/15/11
% http://al pha.es.umb.edu/faculty/edg/files/edgwebp.html
% Table2.5.1

% White Black

% Mde 50 30

% Female 40 x

% P(Black " Female) = P(Black) * P(Female)

% x/(120+x) = (x+30)/(120+x) * (40+x)/(120+Xx)
Syms X

solve(x/(120+x)-(40+x)/(120+x)* (30+x)/(120+x))
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Example 2.5.4
Mutually exclusive events aren’t necessarily independent.

2.5.1 Deducing independence

Example 2.5.5 Proofreading errors. Simple calculation

Example 2.5.6. Probability of arecessive allele = (r+g/2)"2

Example 2.5.7 Probability of different blood types. An example of the Gini-Simpson index of
gene heterogeneity.

% LMex020507_4th.m

% Example 2.5.5 Application of Gini-Simpson diversity p 74 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition

% Written by Eugene.Gallagher@umb.edu, revised 1/15/11

DATA=[.4.1.05 .45];

[r,c]=5ize(DATA);

N=sum(DATA";

P=1-sum(((DATA./repmat(N,1,c))."2)")’; % Thisformulaworks for multiple
% rows of data

G=gini(DATA); % application of the Gini-Simpson index.

fprintf(...

'Probability that Emma & Josh have different blood types = %5.3f\n’,P)
fprintf('Gini-Simpson index of gene heterogeneity = %5.3f\n',G)

function G=gini(DATA)

% Calculate Gini-Simpson's diversity

% format G=gini(DATA)

% Also called gene heterogeneity or gene heterozygosity

% input: a sample x species or sample by character matrix.

% output: G, a column vector with Gini-Simpson diversities

% formulas G=1-sum((ni/N)"2)

% where N isthe sample total and ni is the abundance of

% thei'th species.

% Hurlbert SM (1971) The non-concept of species diversity: a

% critigue and alternative parameters. Ecology 52: 577-586.
% Magurran AE (1988) Ecological diversity and its measurement.
% Princeton Unversity Press.

% written 4/5/94 by E. Gallagher, Environmental Sciences Program
% UMASS/Boston, Eugene.Gallagher@umb.edu

% last revised: 1/15/2011

% See Simpson.m for the unbiased formula

[r,c]=5ize(DATA);

N=sum(DATA";

G=1-sum(((DATA. /Irepmat(N,1,c))."2)");

Questions p 74-75
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25.2 Defining theindependence of more than 2 events

Definition 2.7.2 EventsA,, A,, ..., A, are said to be independent if for every set of indices
iy, Iy ..., I, between 1 and n, inclusive,

PA,NA4,N -~ NA,) = P4, - P4, -~ PA,)

Example 2.5.8 Getting bumped from classes (Some similarities to Hurlbert’ s E(S) )

Example 2.5.9 Probability of exactly one death. A Monte Carlo smulation
% LMex020509_4th.m
% Example 2.5.9 Application of aMonte Carlo simlation p 63-64 in
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene.Gallagher@umb.edu, revised 1/15/11
% http://al pha.es.umb.edu/faculty/edg/files/edgwebp.html
% Probability of survival of 3 independent individuals
PA1=.7;PA2=.9;PA3=0.3;
% The probability of exactly one death is
P=PA1*PA2*(1-PA3)+PA1*(1-PA2)* PA3+(1-PAL)*PA2*PA3;
deaths=0;
trials=1€6;
exactlyone=0;
for i=L:trias
death=0;
if rand>PA1;death=death+1;end
if rand>PA2;death=death+1;end
if rand>PA3;death=death+1;end

if death==1;
exactlyone=exactlyone+1,
end
end

Pexactlyone=exactlyone/trials,
fprintf('The exact P is %5.3f and Monte Carlo smulated P is %5.3f.\n',...
P,Pexactlyone)

Example 2.5.10 Budget approval circuit Protocol for making financial decisionsin certain
corporations follows the “ circuit” pictured in Figure 2.5.1

2.5.3 Repeated ndependent Events

Example 2.5.11 Christmas tree lights

Example 2.5.12 Coin tossing example with Bayes theorem
A box contains one two-headed coin and eight fair coins. One is drawn at random and tossed
seven times. Suppose that all seven tosses come up heads. What is the probability that the coin
isfair?
Thisisbasically a Bayes problem, but the conditional probabilities on the right hand side
of Theorem 2.6.2 appeal to the notion of independence aswell. Define the events B:
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seven heads occured in seven tosses; A,: coin tossed has two heads; A,: coin tossed was
fair.
The question is asking for P(A,[B).

P(A,)=1/9 and P(A,)=8/9

P(BJA,)=P(Head on 1% toss N ... N Head on 7" toss|Coin has two heads)

=1'=1

P(BIA,)= ()’

Substitute into Bayes theorem

P(BA) P(4,)
P(Bl4)P(4,) + P(BA,) P(4))

)
()3 3]

0.06

P(4,B)

Example 2.5.13 Pete Rose hitting safely in 44 consecutive games. P=(1-.7"4)"44

Example 2.5.14 Infant mortality

Example 2.5.15 Craps
% crapstableM OF65, a script m.file
% Calculates atable of expected values for winning at craps.
% Written by E. Gallagher 6/2/03 for ECOS601, now EEOS601, revised 1/15/11
% Eugene.Gallagher@umb.edu
% http://al pha.es.umb.edu/faculty/edg/files/edgwebp.html
% calls crapsmof65.m, Mosteller's el egant solution to craps odds
Pexact=zeros(1,11);
Pnumber=zeros(1,11);
fori=1:11;

[Pexact(i),Pnumber(i)]=crapsmof65(i+1); % calculates exact p and

% probability of each number on
% 1<t toss

end
disp('Column 1: Number rolled on 1st toss);
disp('Column 2: Probability of rolling the number in the 1st column’);
disp(‘Column 3: P(winning) if you roll the number in the 1st column’);
disp(‘Column 4: Column 2 * Column 3)
disp([2:12; Pnumber; Pexact;Pnumber.* Pexact]’)
disp(‘Probability of winning at crapsis sum 2nd column times the third’)
disp('(= sum of 4th column). Pwinning=sum(Pnumber.* Pexact))
Pwinning=sum(Pnumber.* Pexact)

function [Pexact,Pnumber,Odds]=crapsmof 65(number,H)
% format [Pexact,Pnumber,Odds]=crapsmof65(number,H)
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% input: number=value of 1st roll
% H =H' for Pnumber & odds of making 4, 6, 8, or 10 the hard way
% output: Pexact= Exact probability of winning, given 1st roll = number
% Pnumber=Probability of rolling that number by rolling 2 dice.
% Odds =0dds of making number = Pexact/(1-Pexact), NaN if
% Pexact=1
% Using the 'method of reduced sample space' from Mosteller, F. 1965. Fifty
% challenging problems in probability with solutions, p. 9
% see craps.m for a more laborious solution using absorbing Markov chains
% written 6/2/03 by E. Gallagher for EEOS601, revised 1/12/11,
% http://al pha.es.umb.edu/faculty/edg/files/edgwebp.html
if nargin>1
if H=="H'
if mod(number,2) | number ==2 | number==12
error(...
‘Can only make even numbers between 4 & 10 the "hard" way’)
return
end
end
end
die=1:6; % create a sample space of two dicerolls
diel=repmat(die,6,1); % create a matrix, with each row equal to 1 to 6;
die=di€; % transpose of die, now a column vector
die2=repmat(die,1,6); % create a matrix, with each column equal to 1 to 6;
sumdice=diel+die2; % This gives the sample space, the 36 sums of two die.
i=find(sumdice==number); % find the indices for each value equal to number;
lengthi=length(i); % find how many sums of 2 die equal the number in input;

if lengthi== % only true if the number isn't in the sample space.
disp("Y our number isn"t possible, not in the sample space)
number

% The following odd syntax will print the number
fprintf("Y our number, %6.0f, isn"t possible, not in the sample space\n’,number)
return % This stops the program after displaying the message;

end

[r,c]=size(sumdice); % find size of sample space

Pnumber=Ilengthi/(r*c); % What is the probability of rolling your number with 1 roll

% of two dice
% Is the craps shooter an immediate winner?
if (number==7 | number==11) % 2 logical statements using the | OR command.

Pexact=1, % Matlab performs statementsin thisif section only
% if thelogical statement number equals 7 or equals 11
% istrue.

Odds=NaN;

return

end
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% Is the craps shooter an immediate loser?
if (number==2 | number==3 | number==12)
Pexact=0;
Odds=0;
return % exit the function and return to the command window.
end
% Exact probability of making a point - no need for sum of geometric series
% or Markov chains
% Use Mosteller's 'Method of reduced sample space:
% all we need is Probability of rolling a given
% number - which wins - and the probability of rolling a7, which loses.
% We don't need any of the other probabilities
% (e.g., probability of rolling 2, 3 ...)
% Hrst find probability of rolling a7, which resultsin aloss.
j=find(sumdice==7);P7=length(j)/(r*c); % P7 isthe probability of rolling 7
if nargin>1 & H=="H'
ih=find(sumdice==number & diel==number/2);
lengthih=length(ih);
Pnumberh=lengthih/(r*c); % Another way to lose isto roll a soft number
Pexact=Pnumberh/(P7+Pnumber); % Y ou win or lose if you roll an 8
else
Pexact=Pnumber/(Pnumber+P7);
end
Odds=Pexact/(1-Pexact);

Table 2.8.2 Craps
Winning P(A)
event, A,

36
360
As 2
396
Ag .
396
360
36
0.493
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Questions p. 83-85
2.5.12 Assigned Fall 2010
2.5.28. The unsinkable tub is sinking.
A Coast Guard dispatcher receives an SOS from a ship that has run aground off the shore of a
small island. Before the captain can relay her exact position, though, her radio goes dead. The
dispatcher has n helicopter crews he can send out to conduct a search. He suspectsthe ship is
somewhere either south in area | (with probability p) or north in area Il (with probability 1-p).
Each of the n rescue partiesis equally competent and has probability r of locating the ship given
that it has run aground in the sector being searched. How should the dispatcher deploy the
helicopter crews to maximize the probability that one of them will find the missing ship? Hint:
Assume that m search crews have been sent to area| and n-m are sent to areall. Let B denote
the event that the ship isfound, let A, be the event that the shipisin areal, and let A, be the
event that the shipisinareall. Use Theorem 2.6.1 to get an expression for P(B); then
differentiate with respect to m.
[See Nahin problem 16: the unsinkable sub]
2.6 COMBINATORICS
2.6.1 Gottfried Wilhelm Leibniz (1646-1716) 1666 treatise, “ Dissertatio de arte
cominatoria” was perhaps the first monograph written on the subject.”
2.6.2 Counting ordered sequences: the multiplication rule

Multiplication rule If operation A can be performed in m different ways and operation B in n
different ways, the sequence (Operation A, Operation B) can be performed in me n ways.

Example 2.6.1 Lock combinations
Example 2.6.2 Bertillon configuration
Example 2.6.3 Braille

Example 2.6.4 March Madness
Example 2.6.5 Piano keys

2.6.3 Problem-solving hints
2.6.3.1 Draw adiagram
2.6.3.2 Do asimple-case enumeration
2.6.3.3 If the outcomes to be counted fall into structurally different
categories, the total number of outcomes will be the sum (not the
product) of the number of outcomes in each category.
Questions p. 91-93

2.6.1 chemical engineer 3 factors

ciphers
expand('(at+b+c)* (d+etf)* (x+y+u+v+w)’)
264
2.6.5
2.6.6
2.6.7

2.6.8
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2.6.9
2.6.10
26.11
2.6.12
2.6.13
2.6.14
Counting per mutations (when the objectsare all distinct)

Theorem 2.9.1 The number of per mutations of length k that can be formed from a set of
n distinct elements, repetitions not allowed, is denoted by the symbol P, where

n!
(n-k)

Lr=nm-1)(n-2)-(n-k+1) =

Coroallary The number of waysto permute an entire set of n distinct objectsisn!

Example 2.6.6 [Note genetic implications] How many permutations of length k=3 can be
formed from the set of n = 4 distinct elements A, B, C, and D?[24]

%LMex020606_4th.m

% Example 2.6.6 p94in

% Larsen & Marx (2006) Example 2.2.2, page 24 Figure 2.2.1

% Writtten by Eugene Gallagher, Eugene.Gallagher@umb.edu

% http://al pha.es.umb.edu/faculty/edg/files/edgwebp.html

% Written 1/15/2011 & last revised 1/15/2011

% How many permutations of length k=3 can be formed from the set of n=4

% distinct elements, A, B, C, and D?

code=perms('ABCD)

permd=perms('ABCD’)

size(unique(permd4,'rows))

% Table 2.6.2 is generated by deleting the last column.

perm3=perm4(:,1:3)

% Interesting problem, why does deleting the last base make no difference?

size(unigue(perm3,'rows))

Example 2.6.7 Browning permutations

Example 2.6.8 Puzzles

Example 2.6.9 p 95 A deck of 52 cardsis shuffled and dealt face up in arow. For how many
arrangements will the four aces be adjacent?
exp(log(49)+gammaln(5)+gammaln(49))
% or smpler
exp(gammaln(5)+gammaln(50))
1.4599e+064

Example 2.6.10 Rook’ s moves In chess arook can move vertically and horizontaly ... In how
many ways can 8 distinct rooks be placed on a chess board so that no two can capture each
other?
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[x=cumprod(1:8).72;x(8)]

Example 2.6.11 Friday the 13

% LMex020611_4th.m

% Example 2.6.11 p 98in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Writtten by Eugene Gallagher, Eugene.Gallagher@umb.edu
% http://al pha.es.umb.edu/faculty/edg/files/edgwebp.html

% Written 1/15/2011 & last revised 1/15/2011
a=exp(gammaln(5)+gammaln(5))

b=factorial (7)

b=perms('BWZCY AD");[r,c]=size(b)

% Remove the semicolon to list all 5040 orders:

b=[b repmat('X",r,1)];

Example 2.6.12 Consider the number of 9 digit numbers that can be formed by rearranging
without repetition the integers 1 through 9. For how many of the permutations with the 1 and 2
precede the 3 and 4?
At first glance, this seemsto be beyond the scope of Theorem 2.9.1. With the
help of a symmetry argument, the solution is amazingly smple.

Questions p. 99-100
2.6.15 Counting per mutations (when all objectsare not all distinct)
Theorem 2.6.2 The number of waysto arrange n objects, n, being of one kind, n, of a second
kind, ..., and n, of anrth kind, is
n!

nl! n2! ...nr!

.
where E n,=n.
i=1
Comment Ratios like n! /(n,!n,! ... n!) are called multinomial coefficients because the general
term in the expansion of

(x;, +x, + ... +x)

n! n n n,
m .xl x2 ese xr
1° 772

s e Thpe

Brillouin’s (1951) diversity An information-based diversity statistic, appropriate whenever
information-based diversity is being measured from a sample or full census. It is aways
dightly lower than the Shannon-Wiener H'.
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N
NN, .. N!|

N
R :
g A (15)
where, N = Sample total.
N, = Abundance of species k.

Brillouin's H

2= =~

* In

* In

N!

—————— = No. distinguishable permutations with the N,'s.
NN, .. N/

Example 2.6.13 How many waysto arrange 1 nickel, 3 dimes, and 2 quarters?
DATA=[132];
Permutations=exp(sum(DATA)*brillouin(DATA))

function [HB,E]=brillouin(DATA)

% Calculation of Brillouin species diversity.
% HB=(In N!-sum(In ni!))/N

% format [HB,E]=Brillouin(DATA)

% Input: DATA is asample by species matrix,
% Output: HB is Brillouin sample diversity

% E isthe Evennessindex, Pielou'sV
% Hurlbert SM (1971) The non-concept of species diversity: a
% critique and alternative parameters.

% Ecology 52: 577-586.
% Magurran AE (1988) Ecological diversity and its measurement.
% Princeton Unversity Press.
% written 4/5/94 by E. Gallagher,
% Dept of Environmental, Earth & Ocean Sciences
% UMASS/Boston, Eugene.Gallagher@umb.edu
% last revised 9/27/2010
[nsamp,nspec]=size(DATA);
N=sum(DATA":
O=ones(nsamp,nspec);
% find the number of species.
S=sum(~(~DATA))';
InNfact=gammaln(N+1);
suminnifact=sum(gammaln(DATA+O)"’;
HB=(InNfact-sumlnnifact)./N;
if nargout>1

NS=floor(N./S);

r=N-S*NS;

HBMAX=(ones(hsamp,1)./N).* ...

(InNfact-((Sr).*gammaln(NS+1)+...
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r.*gammaln(NS+2)));
E=HB./HBMAX;
end

Example 2.6.14 Huygens anagram
DATA=[75151174294212155];
Permutations=exp(sum(DATA)*brillouin(DATA))

Example 2.6.15 Expansion of (1+x"5+x"9)" 100 Typo in book
DATA=[9 9 5 repmat(1,1,97)];sum(DATA)
Permutations=exp(sum(DATA)*brillouin(DATA))
Permutations =

4.2334e+185 not 485,100

Example 2.6.16 Palindromes

% LMex020616_4th.m

% Example 2.6.16 p 103-104 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Writtten by Eugene Gallagher, Eugene.Gallagher @umb.edu

% http://a pha.es.umb.edu/facul ty/edg/fil es/edgwebp.html

% Written 1/15/2011 & last revised 1/16/2011

% How many different ways are there to form palindromes from these 12
% letters: 4 A's, 6 B's,and 2 C's.

% Program call's Gallagher's brillouin.m, the brillouin's biodiversity

% index.

DATA=[4 6 2]/2;

Permutations=exp(sum(DATA)*brillouin(DATA))

% Advanced problem: List all 60!

function V=palindro(N);

% Palindrome number generator

% Format: V=palindro(N)

% Input:

% N any integer

% V avector of ouput results, with the

% Output: Solution vector, final element isa palindrome
% eg., 1754571, or NaN if numeric accuracy exceeded.
% Algorithm:

% if Nisapalindrome (e.g., 12321) return V=N

% if N isn't apalindrome then

% flip N left toright (e.g., 123 => 321) and

% addtoN. Repeat until a palindrome number

% isachieved or until N>1e15

% Written by E. Gallagher 10/10/96.

% See aso palindvp.m for symbolic

iter=100; %1e15 will be hit long before thisiteration limit
V=zerog(iter,1);

V(1,1)=N;
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for i=2:2:ter-1
V(i,1)=round(eval (fliplr(sprintf('%16.0f',\V(i-1,1)))));
if V(i,1)==V(i-1,1) | V(i,1)>1el5
%  Matlab double precision only 16 significant figures
if(V(i)>1el5);
V=NaN,
else
V(i)=0;
V=V(~(-V));
end
break
else
V(i+1,1)=V(i,1)+V(i-1,1);
end
end EXAMPLE 2.6.17

A deliveryman is currently at Point X and needs to stop at Point 0

Exa_mp| e2.6.17 Deliver yman’ swalk before driving through to Point ¥ (see figure 2.6.14). How many
% LM 6X020617 4thm different routes can he take without ever going out of his way?
% Example 2.6.17 p 104 in EEEE [ITT
% Larsen & Marx (2006) Introduction to
Mathematical Statistics, 4th edition

% Writtten by Eugene Gallagher,
Eugene.Gallagher@umb.edu

% FIGURE 2.6.14
rrgltp://al pha.es.umb.edu/faculty/edg/files/edgwebp.ht Figure 7. Figure 2.6.14 -
% Written 1/15/2011 & last revised 1/16/2011
% A deliveryman is currently at Point X and needsto stop at pont O before

% driving through to point Y (see Figure 2.6.14 on p 104 in Larsen & Marx

% (2006). How many different routes can he take wiout ever going out of his

% way?

% Program call's Gallagher's brillouin.m, the brillouin's biodiversity

% index.

DATA=[92,53];

N=sum(DATA")'

Permutations=exp(sum(N.*brillouin(DATA)));

Questions page 105

2.6.34 Which state can generate more permutations, Tennessee or Horida? Summer 2011
homework problem

2.6.16 Counting combinations
2.6.16.1 We call acollection of unordered elements a combination
of sizek.
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Theorem 2.6.3 The number of waysto form combinations of size k from a set of n distinct

objects, repetitions not allowed, is denoted by the symbols ( Z ) or .C,, where

n - C, = n!

k (n - k)
Comment The symbol ( Z) appears in the statement of the familiar binomial theorem from
algebra,

(x_l_y)n — zn:( n) xkynfk

o\ k

Since the expression begin raised to a power involves two terms, x and y, the constants ( Z) ,

k=0,1, ..., n, are commonly referred to as binomial coefficients and the expression above is often
called Newton's binomial expansion. (Larsen & Marx 2006 p 111)

Example 2.6.18
nchoosek(8,2)

Example 2.6.19

nchoosek(6,3)* nchoosek(7,4)* nchoosek(3,2)
Example 2.6.20 p 109

nchoosek(19,2)

Example 2.6.21 p. 109
% Example 2.6.21 p 109in
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Writtten by Eugene Gallagher, Eugene.Gallagher@umb.edu
% http://al pha.es.umb.edu/faculty/edg/files/edgwebp.html
% Written 1/15/2011 & last revised 1/16/2011
% Mitch wantsto tell 4 jokes at the start of his act and he needs 120
% different combinations of jokes. How many different jokes are needed so
% that he will have at least 120 different opening monologues?
% an application of awhile loop and combination function
i=4;joke=0;
display('Table 2.6.3")
display(" n jokes)
while joke<=120
joke=nchoosek(i,4);
disp([i joke]);
i=i+1;
end
Example 2.6.22
Proof of the relationship between Pascal’ s triangle and binomial coefficients
Not aMatlab problem
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Example 2.6.23

o\ k

Questions
2.6.54
Combinatorial probability

Example 2.7.1 An urn contains eight chips, numbered 1 through 8. A sample of three isdrawn
without replacement. What is the probability that the largest chip in the sampleisa5?
% LMex020701_4th.m

% Example 2.6.21 p 109in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition

% Writtten by Eugene Gallagher, Eugene.Gallagher@umb.edu

% http://al pha.es.umb.edu/faculty/edg/fil es/edgwebp.html

% Written 1/15/2011 & last revised 1/16/2011

% An urn contains eight chips, numbered 1 through 8. A sample of threeis

% drawn without replacement. What is the probability that the largest chip

% inthe sampleisa5?

P=nchoosek(4,2)/nchoosek(8,3)

Example 2.7.2 Not aready Matlab problem, other than the ratio

Example 2.7.3. Somewhat complicated dice problem; not programmed

Example 2.7.4 Somewhat complicated dice problem; not programmed

Example 2.7.5 TARZAN LIKE JANE

% LMex020705_4th.m

% Example 2.7.5 p 116-117 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Writtten by Eugene Gallagher, Eugene.Gallagher@umb.edu

% http://al pha.es.umb.edu/faculty/edg/files/edgwebp.html

% Written 1/16/2011 & last revised 1/16/2011

% Tarzan gives Cheetah the following letters
%AAAEEIJKLNNRTZ

% What is the probability that Cheetah arranges the letters to spell
% TARZAN LIKE JANE, ignore spaces

% using multinomial coefficients

DATA=[3221111111];

format rat

Vexp(sum(DATA)*brillouin(DATA))

% or

exp(gammaln(4)+2* gammal n(3)-gammaln(15))

format

Example 2.7.6 The birthday problem

% LMex020706_4th.m

% Example 2.7.6 The birthday problem p 118-119 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
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% Writtten by Eugene Gallagher, Eugene.Gallagher@umb.edu
% http://a pha.es.umb.edu/faculty/edg/fil es/edgwebp.html
% Written 1/16/2011 & last revised 1/16/2011
% What is the probability that two students out of a group of k will share
% the same birthday?
% calls Gallagher's birthdays.m
disp(' Table2.7.1)
k=[15 22 23 40 50 70];
fprintf(' k P(at least 2 with same birthday)\n’)
for i=1:length(k)
P=birthdays(k(i));
fprintf('%2.0f %5.3f\n" k(i),P)
end

function [P,PM]=birthdays(k,trials)
% What is the probability of having two studentsin a group of k share
% the same birthday?
% format P=birthdays(k,trials)
% input N = number of individualsin group
%  trials (optional) = number of Monte Carlo trials
%  P=exact probability
%  PM = probability based on Monte Carlo simulation
% the birthday problem
% Exact solution & Monte Carlo simulation
% uses Gallagher's ties program for checking birthdays
% Written by E Gallagher, Eugene.Gallagher@umb.edu
% http://al pha.es.umb.edu/faculty/edg/files/edgwebp.html
% Written: 8/5/01, Revised 1/16/11;
P=(365"k - exp(gammaln(366)-gammaln(366-k)))/365"k;
if nargin < 2 & nargout ==2;
trial s=100000; % about 5 seconds
end
if nargout==2
tally=0;
for i=1:trias
draw=randi(365,k,1);
if length(unique(draw))<k % unique will drop shared birthdays
tally=tally+1;
end
end
PM=tally/trials,disp(P);
end

Example 2.7.7 Poker hands

see http://en.wikipedia.or g/wiki/Poker _probability
% LMex020707_4th.m

% Example 2.7.7 Poker hands p 119-121 in
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% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Writtten by Eugene Gallagher, Eugene.Gallagher@umb.edu

% http://al pha.es.umb.edu/faculty/edg/files/edgwebp.html

% Written 1/16/2011 & last revised 1/16/2011

% Probability of different hands

% There are nchoosek(52,5) possible hands.

% Full house. nchoosek(13,1) ways to choose denomination and nchoosek(4,3)
% ways of choosing the suit. There are nchoosek(12,1) ways of choosing a
% pair rom the denominations remaininng (after the denomination of the

% 3-of-a-kind has been selected. There are nchoosek(4,2) ways of choosing
% the suit of the pair.

Pfullhouse=13* nchoosek(4,3)* 12* nchoosek(4,2)/nchoosek(52,5)

% one pair

Plpair= 13*nchoosek(4,2)* nchoosek(12,3)* 4* 4* 4/nchoosek (52,5)

% straight; 5 consecutive numbers, but not all in the same suit

Pstrai ght=(10* 4"5-40)/nchoosek(52,5)

% Two pairs, not correct

P2pairs=...

nchoosek(13,2)* nchoosek(4,2) *12* nchoosek(4,2)* nchoosek(11,1)* 4/nchoosek(52,5)
P3ofakind=...

13*nchoosek(4,3)* nchoosek(12,2)* 4* 4/nchoosek (52,5)

Problem Solving hints

1.

2.

The solution to a combinatorial problem should be set up as a quotient of numerator and
denominator enumerations.
Keep the numerator and denominator consistent with respect to order — if permutations
are being counted in the numerator, be sure that permutations are being counted in the
denominator; likewise, if the outcomes in the numerator are combinations, the outcomes
in the denominator should be combinations
The number of outcomes associated with the rolling of n six-sided dice is6"; similarly,
the number of outcomes associated with tossing a coin n timesis 2". The number of
outcomes associated with dealing a hand of n cards from a standard 52-card poker deck
iS5,C,.
27 TAKING A SECOND LOOK AT STATISTICS(ENUMERATION AND
MONTE CARLO TECHNIQUES)
271
2.7.2 p. 126 Ingeneral effortsto estimate probabilities by smulating repetitions
of an experiment (usually with a computer) are referred to as M onte
Carlo studies.
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